Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Article in English | MEDLINE | ID: covidwho-2324925

ABSTRACT

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , T-Lymphocytes , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antibodies, Viral , Vaccinia virus , Vaccination
2.
Infektsiya I Immunitet ; 12(4):701-712, 2022.
Article in English | Web of Science | ID: covidwho-2309684

ABSTRACT

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), also known as 2019-nCoV (2019-Novel Coronavirus) is a strain of coronavirus from the genus Betacoronavirus, discovered in China at the end of 2019 in patients with pneumonia. "Coronavirus infection COVID-19" (COrona VIrus Disease 2019) caused by coronavirus 2019 (COVID-19) has spread around the world at a very fast pace, with death toll exceeding more than 5.2 million people worldwide. Limited success in developing new drugs as well as use of existing drugs for the treatment of COVID-19 resulted in situation when the main prevention measures for a long time were based on testing and isolation of sick subjects, which started to reverse due to vaccination. Monitoring the formation of humoral and T-cell population immunity against the SARS-CoV-2 virus during the COVID-19 pandemic is a necessary element for epidemiological surveillance. ELISA-based methods are widely used to assess humoral immunity, and various test systems including ELISPOT (Enzyme-Linked ImmunoSpot) are used to analyze cellular immunity. The ELISPOT assay is a highly sensitive and specific method for quantifying individual cytokine-secreting T cells after being stimulated with a specific antigen. "TigraTest (R) SARS-CoV-2" Test assessing release of interferon gamma in vitro to detect peripheral blood T-lymphocytes that specifically respond to the SARS-CoV-2 virus antigens manufactured by GENERIUM JSC, is created on the ELISPOT platform. This study describes the procedure for laboratory validation of this test system to analyze the following parameters: specificity of antibody pair, effect of interfering substances, sensitivity and specificity, precision, stability of blood samples till isolation of target cells. The developed test system showed high diagnostic sensitivity and specificity. The specificity of TigraTest (R) SARS-CoV-2 was 100%, the sensitivity for subjects immunized with the Gam-COVID-Vac vaccine (Sputnik V) was 91.67%, and the sensitivity in convalescent COVID-19 patients was 95.45%. At the same time, the data variability both during within and between series comparison did not exceed 25%, whereas 24-hour storage of peripheral blood samples at (18-25)degrees C after blood collection followed by isolation of target cells did not affect the test results.

3.
Front Immunol ; 13: 907125, 2022.
Article in English | MEDLINE | ID: covidwho-2123412

ABSTRACT

Common variable immunodeficiency (CVID) patients have markedly decreased immune response to vaccinations. In this study we evaluated humoral and T cell-mediated responses against severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) with additional flow cytometric changes in CVID patients receiving booster vaccination with BNT162b2 after two ChAdOx1 nCoV-19. The BNT162b2 vaccine raised the anti-spike protein S immunoglobulin G over the cut-off value from 70% to 83% in CVID, anti-neutralizing antibody had been raised over a cut-off value from 70% to 80% but levels after boosting were significantly less in both tests than in healthy controls (*p=0.02; **p=0.009 respectively). Anti-SARS-CoV-2 immunoglobulin A became less positive in CVID after boosting, but the difference was not significant. The cumulative interferon-γ positive T cell response by ELISpot was over the cut-off value in 53% of the tested individuals and raised to 83% after boosting. This and flow cytometric control of cumulative CD4+ and CD8+ virus-specific T cell absolute counts in CVID were also statistically not different from healthy individuals after boosting. Additional flow cytometric measures for CD45+ lymphocytes, CD3+, and CD19+ cells have not shown significant differences from controls except for lower CD4+T cell counts at both time points (**p=0.003; **p=0.002), in parallel CD4+ virus-specific T-cell ratio was significantly lower in CVID patients at the first time point (*p: 0.03). After boosting, in more than 33% of both CVID patients and also in their healthy controls we detected a decrease in absolute CD45+, CD3+, CD3+CD4+, and CD3+CD8+, CD19+, and CD16+56+ cell counts. CD16+CD56+ cell counts were significantly lower compared to controls before and after boosting (*p=0.02, *p=0.02). CVID patients receiving immunosuppressive therapy throughout the previous year or autologous stem cell transplantation two years before vaccination had worse responses in anti-spike, anti-neutralizing antibody, CD3+CD4+T, CD19+ B, and natural killer cell counts than the whole CVID group. Vaccinations had few side effects. Based on these data, CVID patients receiving booster vaccination with BNT162b2 after two ChadOx1 can effectively elevate the levels of protection against COVID-19 infection, but the duration of the immune response together with COVID-19 morbidity data needs further investigation among these patients.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Hematopoietic Stem Cell Transplantation , Adaptor Proteins, Signal Transducing , Antigens, CD19 , BNT162 Vaccine , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , SARS-CoV-2 , T-Lymphocytes , Transplantation, Autologous
4.
Immun Inflamm Dis ; 10(10): e617, 2022 10.
Article in English | MEDLINE | ID: covidwho-2030978

ABSTRACT

INTRODUCTION: Evaluation of different cell-based assays for the study of adaptive immune responses against SARS-CoV-2 is crucial for studying long-term and vaccine-induced immunity. METHODS: Enzyme-linked immunospot assay (ELISpot) and intracellular cytokine staining (ICS) using peptide pools spanning the spike protein and nucleoprotein of SARS-CoV-2 were performed in 25 patients who recovered from paucisymptomatic (n = 19) or severe COVID-19 (n = 6). RESULTS: The proportion of paucisymptomatic patients with detectable SARS-CoV-2 T cells was low, as only 44% exhibit a positive T cell response with the ICS and 67% with the ELISpot. The magnitude of SARS-CoV-2 T cell responses was low, both with ICS (median at 0.12% among total T cells) and ELISpot (median at 61 SFCs/million peripheral blood mononuclear cells [PBMC]) assays. Moreover, T cell responses in paucisymptomatic patients seemed lower than among patients with severe disease. In the paucisymptomatic patients, the two assays were well correlated with 76% of concordant responses and a Cohen's kappa of 55. Furthermore, in four patients SARS-CoV-2 T cells were detected by ELISpot but not with ICS. Short-term culture could improve the detection of specific T cells. CONCLUSIONS: In patients who recovered from paucisymptomatic COVID-19, the proportion of detectable anti-SARS-CoV-2 responses and their magnitude seemed lower than in patients with more severe symptoms. The ELISpot appeared to be more sensitive than the ICS assay. Short-term culture revealed that paucisymptomatic patients had nonetheless few SARS-CoV-2 T cells at a very low rate in peripheral blood. These data indicate that various ex-vivo assays may lead to different conclusions about the presence or absence of SARS-CoV-2 T cell immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokines , Enzyme-Linked Immunospot Assay , Flow Cytometry , Humans , Leukocytes, Mononuclear , Nucleoproteins , Peptides , Spike Glycoprotein, Coronavirus , T-Lymphocytes
5.
J Virol ; 96(13): e0050922, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1891737

ABSTRACT

Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Cytokines , Immunity , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/immunology , COVID-19 Vaccines , Cytokines/immunology , Female , Humans , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-2/immunology , Male , Severity of Illness Index , Time Factors
6.
Biosaf Health ; 4(3): 179-185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872950

ABSTRACT

Like antibody evaluation, using an effective antigen-specific T-cell immunity assessment method in coronavirus disease 2019 (COVID-19) patients, survivors and vaccinees is crucial for understanding the immune persistence, prognosis assessment, and vaccine development for COVID-19. This study evaluated an empirically adjusted enzyme-linked immunospot assay for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity in 175 peripheral blood samples from COVID-19 convalescents and healthy individuals. Results of viral nucleic acid were used as the gold standard of infection confirmation. The SARS-CoV-2M peptide pool had higher sensitivity of 85% and specificity of 71% for the single peptide pool. For combined peptide pools, the parallel evaluation (at least one of the peptide pools is positive) of total peptide pools (S1&S2&M&N) had higher sensitivity (up to 93%), and the serial evaluation (all peptide pools are positive) of total peptide pools had higher specificity (up to 100%). The result of the serial evaluation was better than that of the parallel evaluation as a whole. The detection efficiency of M and N peptide pool serial evaluation appeared the highest, with a sensitivity of 80% and specificity of 93%. This T-cell immunity detection assay introduced in this report can achieve high operability and applicability. Therefore, it can be an effective SARS-CoV-2-specific cellular immune function evaluation method.

7.
Vaccines (Basel) ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1822474

ABSTRACT

In the present study, antibody and T cell-mediated immune responses elicited by BBIBP-CorV and BNT162b2 vaccines were compared 6 months after the two-dose immunization of healthy individuals. Additionally, antibody and T cell responses after the third dose of BBIBP-CorV or BNT162b2 were compared using a homologous or heterologous vaccination strategy. The third dose was consistently administered 6 months after the second dose. Six months following the two-dose vaccination, the cumulative IFNγ-positive T cell response was almost identical in participants immunized with either two doses of BNT162b2 or BBIBP-CorV vaccines; however, significant differences were revealed regarding humoral immunity: the two-dose BNT162b2 vaccine maintained a significantly higher antireceptor-binding domain (RBD) IgG, anti-spike (S1/S2) IgG, and IgA antibody levels. The BNT162b2 + BNT162b2 + BBIBP-CorV vaccine series elicited significantly lower anti-RBD IgG and anti-S1/S2 IgG levels than three doses of BNT162b2, while the anti-S IgA level was equally negligible in both groups. Importantly, the cumulative IFNγ-positive T cell response was highly similar in both groups. Surprisingly, the BBIBP-CorV + BBIBP-CorV + BNT162b2 vaccination series provided a much higher cumulative IFNγ-positive T cell response than that elicited by three doses of BNT162b2; moreover, the levels of anti-RBD IgG and anti-S IgA were almost identical. Only the mean anti-S1/S2 IgG levels were higher after receiving three mRNA vaccines. Based on these data, we can conclude that administering a third dose of BNT162b2 after two doses of BBIBP-CorV is an effective strategy to significantly enhance both humoral and T cell-mediated immune response, and its effectiveness is comparable to that of three BNT162b2 vaccines.

8.
Vaccine ; 40(19): 2652-2655, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1764021

ABSTRACT

To evaluate vaccine-induced humoral and cell-mediated immunity at 6 months after completion of two doses of BNT162b2 vaccination, immunoglobulin G against SARS-CoV-2 spike protein (SP IgG), 50% neutralizing antibody (NT50), and spot-forming cell (SFC) counts were evaluated by interferon-γ releasing ELISpot assay of 98 healthy subjects (median age, 43 years). The geometric mean titers of SP IgG and NT50 decreased from 95.2 (95% confidence interval (CI) 79.8-113.4) to 5.7 (95% CI 4.9-6.7) and from 680.4 (588.0-787.2) to 130.4 (95% CI 104.2-163.1), respectively, at 3 weeks and 6 months after the vaccination. SP IgG titer was negatively correlated with age and alcohol consumption. Spot-forming cell counts at 6 months did not correlate with age, gender, and other parameters of the patients. SP IgG, NT50, and SFC titers were elevated in the breakthrough infected subjects. Although the levels of vaccine-induced antibodies dramatically declined at 6 months after vaccination, a certain degree of cellular immunity was observed irrespective of the age.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Vaccination
9.
Geroscience ; 43(5): 2321-2331, 2021 10.
Article in English | MEDLINE | ID: covidwho-1460452

ABSTRACT

In the present study, humoral and T cell-mediated immune responses elicited by BBIBP-CorV (inactivated virus) and BNT162b2 (mRNA-based) vaccines against SARS-CoV-2 virus were compared. Convalescent volunteers were also investigated to evaluate adaptive immunity induced by live virus. Although both vaccines induced antibody- and T cell-mediated immune responses, our analysis revealed significant quantitative and qualitative differences between the two types of challenges. The BBIBP-CorV vaccine elicited antireceptor-binding domain (RBD) IgG, as well as anti-spike protein (S) IgG and IgA antibodies in healthy individuals, the levels of which were much lower than after BNT162b2 vaccination but still higher than in the convalescent patients. The cumulative IFNγ-positive T cell response, however, was only twofold higher in participants injected with BNT162b2 compared to those who were primed and boosted with BBIBP-CorV vaccine. Moreover, the inactivated virus vaccine induced T cell response that targets not only the S but also the nucleocapsid (N) and membrane (M) proteins, whereas the mRNA vaccine was able to elicit a much narrower response that targets the S protein epitopes only. Thus, the pattern of BBIBP-CorV-induced T cell response in virus-naive participants was similar to the cell-mediated anti-SARS-CoV-2 response observed in convalescent patients. Based on these data, we can conclude that the BBIBP-CorV inactivated virus vaccine is immunologically effective. However, the duration of BBIBP-CorV-induced integrated, antibody, and T cell-mediated, immune responses needs further investigation.


Subject(s)
COVID-19 , Vaccines , BNT162 Vaccine , COVID-19 Vaccines , Humans , SARS-CoV-2 , T-Lymphocytes
10.
Front Immunol ; 12: 684014, 2021.
Article in English | MEDLINE | ID: covidwho-1290901

ABSTRACT

T cells play a fundamental role in the early control and clearance of many viral infections of the respiratory system. In SARS-CoV-2-infected individuals, lymphopenia with drastically reduced CD4+ and CD8+ T cells correlates with Coronavirus disease 2019 (COVID-19)-associated disease severity and mortality. In this study, we characterized cellular and humoral immune responses induced in patients with mild, severe and critical COVID-19. Peripheral blood mononuclear cells of 37 patients with mild, severe and critical COVID-19 and 10 healthy individuals were analyzed by IFNγ ELISpot and multi-color flow cytometry upon stimulation with peptide pools covering complete immunodominant SARS-CoV-2 matrix, nucleocapsid and spike proteins. In addition SARS-CoV-2 antibody levels, neutralization abilities and anaphylatoxin levels were evaluated by various commercially available ELISA platforms. Our data clearly demonstrates a significantly stronger induction of SARS-CoV-2 specific CD8+ T lymphocytes and higher IFNγ production in patients with mild compared to patients with severe or critical COVID-19. In all patients SARS-CoV-2-specific antibodies with similar neutralizing activity were detected, but highest titers of total IgGs were observed in critical patients. Finally, elevated anaphylatoxin C3a and C5a levels were identified in severe and critical COVID-19 patients probably caused by aberrant immune complex formation due to elevated antibody titers in these patients. Crucially, we provide a full picture of cellular and humoral immune responses of COVID-19 patients and prove that robust polyfunctional CD8+ T cell responses concomitant with low anaphylatoxin levels correlate with mild infections. In addition, our data indicates that high SARS-CoV-2 antibody titers are associated with severe disease progression.


Subject(s)
Anaphylatoxins/metabolism , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/physiopathology , Disease Progression , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , Humans , Immunity, Humoral , Interferon-gamma/blood , Male , Middle Aged , Patient Acuity
SELECTION OF CITATIONS
SEARCH DETAIL